Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1374796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550582

RESUMO

For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.


Assuntos
Doenças Autoimunes , Infecções por Coxsackievirus , Vesículas Extracelulares , Miocardite , Humanos , Autoimunidade , Enterovirus Humano B , Mitocôndrias/metabolismo , Vesículas Extracelulares/metabolismo
2.
J Extracell Vesicles ; 13(1): e12397, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158550

RESUMO

Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.


Assuntos
Vesículas Extracelulares , Biomarcadores/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Reprodutibilidade dos Testes
3.
Acta Neuropathol Commun ; 11(1): 166, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853497

RESUMO

Tau tubulin kinase-1 (TTBK1), a neuron-specific tau kinase, is highly expressed in the entorhinal cortex and hippocampal regions, where early tau pathology evolves in Alzheimer's disease (AD). The protein expression level of TTBK1 is elevated in the cortex brain tissues with AD patients compared to the control subjects. We therefore hypothesized that antisense oligonucleotide (ASO) based targeting Ttbk1 could prevent the accumulation of phosphorylated tau, thereby delaying the development of tau pathology in AD. Here we show that in vivo administration of ASO targeting mouse Ttbk1 (ASO-Ttbk1) specifically suppressed the expression of Ttbk1 without affecting Ttbk2 expression in the temporal cortex of PS19 tau transgenic mice. Central administration of ASO-Ttbk1 in PS19 mice significantly reduced the expression level of representative phosphor-tau epitopes relevant to AD at 8 weeks post-dose, including pT231, pT181, and pS396 in the sarkosyl soluble and insoluble fractions isolated from hippocampal tissues as determined by ELISA and pS422 in soluble fractions as determined by western blotting. Immunofluorescence demonstrated that ASO-Ttbk1 significantly reduced pS422 phosphorylated tau intensity in mossy fibers region of the dentate gyrus in PS19 mice. RNA-sequence analysis of the temporal cortex tissue revealed significant enrichment of interferon-gamma and complement pathways and increased expression of antigen presenting molecules (Cd86, Cd74, and H2-Aa) in PS19 mice treated with ASO-Ttbk1, suggesting its potential effect on microglial phenotype although neurotoxic effect was absent. These data suggest that TTBK1 is an attractive therapeutic target to suppress TTBK1 without compromising TTBK2 expression and pathological tau phosphorylation in the early stages of AD.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Humanos , Oligonucleotídeos Antissenso/farmacologia , Proteínas tau/genética , Proteínas tau/metabolismo , Fosforilação , Tauopatias/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Hipocampo/patologia , Córtex Entorrinal/metabolismo
4.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749326

RESUMO

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Assuntos
Doença de Alzheimer , Feminino , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglia/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
5.
Sci Adv ; 9(37): eadi3647, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713494

RESUMO

Neuron-derived extracellular vesicles (NDEVs) are potential biomarkers of neurological diseases although their reliable molecular target is not well established. Here, we demonstrate that ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3) is abundantly expressed in extracellular vesicles (EVs) isolated from induced human neuron, brain, cerebrospinal fluid, and plasma in comparison with the presumed NDEV markers NCAM1 and L1CAM by using super-resolution microscopy and biochemical assessments. Proteomic analysis of immunoprecipitated ATP1A3+ brain-derived EVs shows higher enrichment of synaptic markers and cargo proteins relevant to Alzheimer's disease (AD) compared to NCAM1+ or LICAM+ EVs. Single particle analysis shows the elevated amyloid-ß positivity in ATP1A3+ EVs from AD plasma, providing better diagnostic prediction of AD over other plasma biomarkers. Thus, ATP1A3 is a reliable target to isolate NDEV from biofluids for diagnostic research.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Proteômica , Encéfalo , Moléculas de Adesão de Célula Nervosa , Neurônios , ATPase Trocadora de Sódio-Potássio
6.
J Extracell Vesicles ; 12(8): e12358, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563857

RESUMO

Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication and promising biomarkers and therapeutics in the central nervous system (CNS). Human brain-derived EVs (BDEVs) provide a comprehensive snapshot of physiological changes in the brain's environment, however, the isolation of BDEVs and the comparison of different methods for this purpose have not been fully investigated. In this study, we compared the yield, morphology, subtypes and protein cargo composition of EVs isolated from the temporal cortex of aged human brains using three established separation methods: size-exclusion chromatography (SEC), phosphatidylserine affinity capture (MagE) and sucrose gradient ultracentrifugation (SG-UC). Our results showed that SG-UC method provided the highest yield and collected larger EVs compared to SEC and MagE methods as assessed by transmission electron microscopy and nanoparticle tracking analysis (NTA). Quantitative tandem mass-tag (TMT) mass spectrometry analysis of EV samples from three different isolation methods identified a total of 1158 proteins, with SG-UC showing the best enrichment of common EV proteins with less contamination of non-EV proteins. In addition, SG-UC samples were enriched in proteins associated with ATP activity and CNS maintenance, and were abundant in neuronal and oligodendrocytic molecules. In contrast, MagE samples were more enriched in molecules related to lipoproteins, cell-substrate junction and microglia, whereas SEC samples were highly enriched in molecules related to extracellular matrix, Alzheimer's disease and astrocytes. Finally, we validated the proteomic results by performing single-particle analysis using the super-resolution microscopy and flow cytometry. Overall, our findings demonstrate the differences in yield, size, enrichment of EV cargo molecules and single EV assay by different isolation methods, suggesting that the choice of isolation method will have significant impact on the downstream analysis and protein discovery.


Assuntos
Vesículas Extracelulares , Humanos , Idoso , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Lipoproteínas/análise , Microscopia Eletrônica de Transmissão , Encéfalo/metabolismo
7.
Nat Neurosci ; 26(7): 1196-1207, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291336

RESUMO

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Camundongos , Animais , Doença de Alzheimer/metabolismo , Interferon gama/metabolismo , Microglia/metabolismo , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/metabolismo
8.
iScience ; 26(4): 106375, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37035000

RESUMO

The genetic associations of TREM2 loss-of-function variants with Alzheimer disease (AD) indicate the protective roles of microglia in AD pathogenesis. Functional deficiencies of TREM2 disrupt microglial clustering around amyloid ß (Aß) plaques, impair their transcriptional response to Aß, and worsen neuritic dystrophy. However, the molecular mechanism underlying these phenotypes remains unclear. In this study, we investigated the pathological role of another AD risk gene, INPP5D, encoding a phosphoinositide PI(3,4,5)P3 phosphatase expressed in microglia. In a Tyrobp-deficient TREM2 loss-of-function mouse model, Inpp5d haplodeficiency restored the association of microglia with Aß plaques, partially restored plaque compaction, and astrogliosis, and reduced phosphorylated tau+ dystrophic neurites. Mechanistic analyses suggest that TREM2/TYROBP and INPP5D exert opposing effects on PI(3,4,5)P3 signaling pathways as well as on phosphoproteins involved in the actin assembly. Our results suggest that INPP5D acts downstream of TREM2/TYROBP to regulate the microglial barrier against Aß toxicity, thereby modulates Aß-dependent pathological conversion of tau.

9.
Mol Aspects Med ; 91: 101155, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36456416

RESUMO

Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.


Assuntos
Vesículas Extracelulares , Medicina de Precisão , Humanos , Sistemas de Liberação de Medicamentos , Biomarcadores , Biópsia Líquida
10.
Brain Behav Immun ; 107: 403-413, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395958

RESUMO

There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.


Assuntos
Espinhas Dendríticas
11.
Acta Neuropathol Commun ; 10(1): 136, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076283

RESUMO

Single cell RNA sequencing studies identified novel neurodegeneration-associated microglial (MGnD/DAM) subtypes activated around cerebral amyloid plaques. Micro-RNA (miR)-155 of the TREM2-APOE pathway was shown to be a key transcriptional regulator of MGnD microglial phenotype. Despite growing interest in studying manifestations of Alzheimer's disease (AD) in the retina, a CNS organ accessible to noninvasive high-resolution imaging, to date MGnD microglia have not been studied in the AD retina. Here, we discovered the presence and increased populations of Clec7a+ and Galectin-3+ MGnD microglia in retinas of transgenic APPSWE/PS1L166P AD-model mice. Conditionally targeting MGnD microglia by miR-155 ablation via the tamoxifen-inducible CreERT2 system in APPSWE/PS1L166P mice diminished retinal Clec7a+ and Galectin-3+ microglial populations while increasing homeostatic P2ry12+ microglia. Retinal MGnD microglia were often adhering to microvessels; their depletion protected the inner blood-retina barrier and reduced vascular amyloidosis. Microglial miR-155 depletion further limits retinal inflammation. Mass spectrometry analysis revealed enhanced retinal PI3K-Akt signaling and predicted IL-8 and Spp1 decreases in mice with microglia-specific miR-155 knockout. Overall, this study identified MGnD microglia in APPSWE/PS1L166P mouse retina. Transcriptional regulation of these dysfunctional microglia mitigated retinal inflammation and vasculopathy. The protective effects of microglial miR-155 ablation should shed light on potential treatments for retinal inflammation and vascular damage during AD and other ocular diseases.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Galectina 3/genética , Galectina 3/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Receptores Imunológicos/metabolismo
12.
STAR Protoc ; 3(4): 101670, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36107747

RESUMO

Numerous approaches have been developed to isolate microglia from the brain, but procedures using enzymatic dissociation at 37°C can introduce drastic transcriptomic changes and confound results from gene expression assays. Here, we present an optimized protocol for microglia isolation using mechanical homogenization. We use Dounce homogenization to homogenize mouse brain tissue into single-cell suspension. We then isolate microglia through Percoll gradient and flow cytometry. Isolated microglia exhibit a gene expression pattern without the changes induced by heated enzymatic digestion. For complete details on the use and execution of this protocol, please refer to Clayton et al. (2021).


Assuntos
Separação Celular , Microglia , Animais , Camundongos , Encéfalo , Separação Celular/métodos , Citometria de Fluxo , Transcriptoma
14.
Cell Stress Chaperones ; 27(5): 461-478, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35689138

RESUMO

Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain. Transcriptomic profiling by RNA-seq of primary microglia and the cultured EOC2 microglial cell line treated with eHsp90α showed the chaperone to stimulate activation of innate immune responses in microglia that were characterized by an increase in NF-kB-regulated genes. Further characterization showed this response to be substantially lower in amplitude than the effects of other inflammatory stimuli such as fibrillar amyloid-ß (fAß) or lipopolysaccharide (LPS). Additionally, the toxicity of conditioned media obtained from microglia treated with fAß was attenuated by addition of eHsp90α. Using a co-culture system of microglia and hippocampal neuronal cell line HT22 cells separated by a chamber insert, the neurotoxicity of medium conditioned by microglia treated with fAß was reduced when eHsp90α was also added. Mechanistically, eHsp90α was shown to activate Nrf2, a response which attenuated fAß-induced nitric oxide production. The data thus suggested that eHsp90α protects against fAß-induced oxidative stress. We also report eHsp90α to induce expression of macrophage receptor with collagenous structure (Marco), which would permit receptor-mediated endocytosis of fAß.


Assuntos
Microglia , Doenças Neurodegenerativas , Peptídeos beta-Amiloides/toxicidade , Meios de Cultivo Condicionados/farmacologia , Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo
15.
Cell Rep ; 39(6): 110791, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545052

RESUMO

Activated microglia release extracellular vesicles (EVs) as modulators of brain homeostasis and innate immunity. However, the molecules critical for regulating EV production from microglia are poorly understood. Here we establish a murine microglial cell model to monitor EV secretion by measuring the fluorescence signal of tdTomato, which is linked to tetraspanin CD63. Stimulation of tdTomato+ cells with ATP induces rapid secretion of EVs and a reduction in cellular tdTomato intensity, reflecting EV secretion. We generate a GFP+ tdTomato+ cell library expressing TurboGFP and barcoded short hairpin RNAs for genome-wide screening using next-generation sequencing. We identify Mcfd2, Sepp1, and Sdc1 as critical regulators of ATP-induced EV secretion from murine microglia. Small interfering RNA (siRNA-based) silencing of each of these genes suppresses lipopolysaccharide- and ATP-induced inflammasome activation, as determined by interleukin-1ß release from primary cultured murine microglia. These molecules are critical for microglial EV secretion and are potential therapeutic targets for neuroinflammatory disorders.


Assuntos
Vesículas Extracelulares , Microglia , Trifosfato de Adenosina , Animais , Lipopolissacarídeos/farmacologia , Camundongos , RNA Interferente Pequeno
16.
Aging Cell ; 21(6): e13617, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567427

RESUMO

Alzheimer's disease (AD) is a pervasive neurodegeneration disease with high heritability. In this study, we employed CRISPR-Cas9-engineered technology to investigate the effects of a rare mutation (rs144662445) in the A kinase anchoring protein 9 (AKAP9) gene, which is associated with AD in African Americans (AA), on tau pathology and the tau interactome in SH-SY5Y P301L neuron-like cells. The mutation significantly increased the level of phosphorylated tau, specifically at the site Ser396/Ser404. Moreover, analyses of the tau interactome measured by affinity purification-mass spectrometry revealed that differentially expressed tau-interacting proteins in AKAP9 mutant cells were associated with RNA translation, RNA localization and oxidative activity, recapitulating the tau interactome signature previously reported with human AD brain samples. Importantly, these results were further validated by functional studies showing a significant reduction in protein synthesis activity and excessive oxidative stress in AKAP9 mutant compared with wild type cells in a tau-dependent manner, which are mirrored with pathological phenotype frequently seen in AD. Our results demonstrated specific effects of rs14462445 on mis-processing of tau and suggest a potential role of AKAP9 in AD pathogenesis.


Assuntos
Doença de Alzheimer , Neuroblastoma , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Doença de Alzheimer/patologia , Proteínas do Citoesqueleto/metabolismo , Humanos , Mutação/genética , Neuroblastoma/patologia , Neurônios/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
17.
Alzheimers Dement ; 18(11): 2042-2054, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35142023

RESUMO

INTRODUCTION: The apolipoprotein E (APOE) ɛ2 allele reduces risk against Alzheimer's disease (AD) but mechanisms underlying this effect are largely unknown. METHODS: We conducted a genome-wide association study for AD among 2096 ɛ2 carriers. The potential role of the top-ranked gene and complement 4 (C4) proteins, which were previously linked to AD in ɛ2 carriers, was investigated using human isogenic APOE allele-specific induced pluripotent stem cell (iPSC)-derived neurons and astrocytes and in 224 neuropathologically examined human brains. RESULTS: PPP2CB rs117296832 was the second most significantly associated single nucleotide polymorphism among ɛ2 carriers (P = 1.1 × 10-7 ) and the AD risk allele increased PPP2CB expression in blood (P = 6.6 × 10-27 ). PPP2CB expression was correlated with phosphorylated tau231/total tau ratio (P = .01) and expression of C4 protein subunits C4A/B (P = 2.0 × 10-4 ) in the iPSCs. PPP2CB (subunit of protein phosphatase 2A) and C4b protein levels were correlated in brain (P = 3.3 × 10-7 ). DISCUSSION: PP2A may be linked to classical complement activation leading to AD-related tau pathology.


Assuntos
Doença de Alzheimer , Humanos , Apolipoproteína E2/genética , Doença de Alzheimer/patologia , Proteína Fosfatase 2/genética , Estudo de Associação Genômica Ampla , Apolipoproteínas E/genética , Complemento C4/genética , Apolipoproteína E4/genética , Proteínas tau/genética
18.
J Extracell Vesicles ; 11(1): e12183, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029059

RESUMO

In neurodegenerative diseases, extracellular vesicles (EVs) transfer pathogenic molecules and are consequently involved in disease progression. We have investigated the proteomic profiles of EVs that were isolated from four different human-induced pluripotent stem cell-derived neural cell types (excitatory neurons, astrocytes, microglia-like cells, and oligodendrocyte-like cells). Novel cell type-specific EV protein markers were then identified for the excitatory neurons (ATP1A3, NCAM1), astrocytes (LRP1, ITGA6), microglia-like cells (ITGAM, LCP1), and oligodendrocyte-like cells (LAMP2, FTH1), as well as 16 pan-EV marker candidates, including integrins and annexins. To further demonstrate how cell-type-specific EVs may be involved in Alzheimer's disease (AD), we performed protein co-expression network analysis and conducted cell type assessments for the proteomes of brain-derived EVs from the control, mild cognitive impairment, and AD cases. A protein module enriched in astrocyte-specific EV markers was most significantly associated with the AD pathology and cognitive impairment, suggesting an important role in AD progression. The hub protein from this module, integrin-ß1 (ITGB1), was found to be significantly elevated in astrocyte-specific EVs enriched from the total brain-derived AD EVs and associated with the brain ß-amyloid and tau load in independent cohorts. Thus, our study provides a featured framework and rich resource for the future analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/citologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrina beta1/metabolismo , Proteoma/metabolismo , Proteínas tau/metabolismo
19.
Aging Dis ; 12(6): 1363-1375, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527415

RESUMO

Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of exposure to repetitive head impacts, including National Football League (NFL) players. Extracellular vesicles (EVs) are known to carry tau in Alzheimer's disease and other tauopathies. We examined protein profiles of EVs separated from the plasma of former NFL players at risk for CTE. EVs were separated from the plasma from former NFL players and age-matched controls using size-exclusion chromatography. Label-free quantitative proteomic analysis identified 675 proteins in plasma EVs, and 17 proteins were significantly differentially expressed between former NFL players and controls. Total tau (t-tau) and tau phosphorylated at threonie181 (p-tau181) in plasma-derived EVs were measured by ultrasensitive immunoassay. Level of t-tau and p-tau181 in EVs were significantly different, and the area under the receiver operating characteristic curve (AUC) of t-tau and p-tau181 showed 0.736 and 0.715, respectively. Machine learning analysis indicated that a combination of collagen type VI alpha 3 and 1 chain (COL6A3 and COL6A1) and reelin (RELN) can distinguish former NFL players from controls with 85% accuracy (AUC = 0.85). Based on the plasma EV proteomics, these data provide protein profiling of plasma EVs for CTE, and indicate combination of COL6A3, RELN and COL6A1 in plasma EVs may serve as the potential diagnostic biomarkers for CTE.

20.
Aging Dis ; 12(6): 1376-1388, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527416

RESUMO

Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of mild repetitive brain injury. The initial neuropathologic changes of CTE include perivascular deposition of phosphorylated microtubule-associated protein tau (p-tau). Extracellular vesicles (EVs) are known to carry pathogenic molecules, such as tau in Alzheimer's disease and CTE suggesting their contribution in pathogenesis. We therefore examined the protein composition of EVs separated from CTE and an age-matched control brain tissues by tandem mass tag -mass spectrometry. The reporter ion intensity was used to quantify the identified molecules. A total of 516 common proteins were identified among three sets of experiments. Weighted protein co-expression network analysis identified 18 unique modules of co-expressed proteins. Two modules were significantly correlated with total tau (t-tau) and p-tau protein in the isolated EVs and enriched in cellular components and biological processes for synaptic vesicle secretion and multivesicular body-plasma membrane fusion. The p-tau (Thr181) level is significantly higher in CTE EVs compared to control EVs and can distinguish the two groups with 73.6% accuracy. A combination of t-tau or p-tau (Thr181) with SNAP-25, PLXNA4 or UBA1, enhanced the accuracy to 96.3, 93.8 and 93.8%, respectively. Bioinformatic protein-protein interaction analysis revealed the functional interaction of SNAP-25 and PLXNA4 with tau, suggesting their interaction in CTE EVs. These data indicate the future application of identified EV proteins for monitoring the CTE risk assessments and understanding the EV-mediated disease progression mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...